

Precipitation Response in Climate Models:
What's new in CMIP5?
(thus far)

Gabriel Vecchi NOAA/GFDL Princeton, NJ

Gabriel.A.Vecchi@noaa.gov

Images: NASA

Global climate model: Mathematical representation of processes controlling ocean, atmosphere, land and ice system (and interactions)

"Force" with solar radiation, structure of continents, land use and atmospheric composition (CO_2 , O_3 , aerosols, volcanoes, etc.)

Coupled Model Intercomparison Project #5 (CMIP5)

Taylor et al. (2012)

- Coordinated GCM experiments to address key issues in climate science:
 - Paleoclimate, response to CO_2 , aerosols, volcanoes, high-resolution, decadal predictability, earth-system modeling, geoengineering...
- Around 20 centers worldwide (including GFDL)
- Entering the "analysis" phase: centers have made data publicly available
- Follows on to CMIP3 (mid-2000s), CMIP2 (late 1990s) and CMIP (early 1990s).
- Some results will be assessed in IPCC-AR5

CM4 ?? - drawing on what is learned from these various streams

Multiple models, scenarios and ensembles: to address key uncertainty sources in projections

Sources of uncertainty (after Hawkins and Sutton 2009, 2011)

- Variability: independent of radiative forcing changes
- Response: "how will climate respond to changing GHGs & Aerosols?"
- Forcing: "how will GHGs & Aerosols change in the future?"

Precipitation and CO₂ in CMIP5

Global-mean response of precipitation and humidity has not changed in recent models

Increase like
Claussius-Clapeyron

Increase controlled by radiative cooling

CO₂ Dominated CMIP3 Multi-model Precipitation Projections

CMIP5 precipitation response to CO₂ similar to that of CMIP3

Resolution (computer power) can help represent processes and phenomena

c.f. Sarah Kapnick's talk

Resolution: response of precipitation to CO₂ can show big differences in regional scale, but not global

Delworth et al. (2012, J. Clim.)

"Wet get wetter, dry drier"

Non-greenhouse forcing

New 21st Century Scenarios include big aerosol forcing, many new models have more ways to respond to aerosols

Response to aerosol changes seen in precipitation projections for 21st century in CMIP5 models

Jun-Nov averages left at CO2 doubling right 2051-2070

Vecchi et al. (2012, in prep.)

Projected precipitation change can differ substantially from CO₂ alone, "pattern scaling" does not hold

CO₂ shows transient response at doubling Projections show 2081-2100 minus 1986-2005

Vecchi et al. (2012, in prep.)

CO₂ and aerosols influential on hydrological changes – and their uncertainties

These are my interpretations of current "state of science", qualitative

	Knowledge of past forcing	Knowledge of near-term future forcing	Knowledge of century-scale future forcing	Understanding & Ability to Model Impact
CO ₂	Good	Decent (large inertia)	Medium-Low (human choices matter, biology, etc.)	Medium on large-scale Medium-Low on local scale
Aerosols	Low (not well mixed in space, many timescales, many types)	Low (human choices matter; don't understand all processes)	Low (human choices matter; don't understand all processes)	Low (don't understand all processes, processes occur across many scales)

References:

- Delworth, T.L. and coauthors. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. *J. Climate* doi:10.1175/JCLI-D-11-00316.1 (2012; in press).
- Hawkins, E., & R. Sutton. The potential to narrow uncertainty in regional climate predictions. *Bulletin of the American Meteorological Society* **90**, 1095–1107 (2009).
- Hawkins, E., & R. Sutton. The potential to narrow uncertainty in projections of regional precipitation change. *Climate Dynamics* **37**, 407-418 (2011).
- Held, I. M. & Soden, B. J.. Robust responses of the hydrological cycle to global warming. *J. Clim.* 19, 5686-5699 (2006).
- Taylor, K.E., R.J. Stouffer, & G.A. Meehl. An overview of CMIP5 and the experiment design. *Bulletin of the American Meteorological Society*, doi: 10.1175/BAMS-D-11-00094.1, (2012; in press).
- Vecchi, G.A., B.J. Soden, I.M. Held, and coauthors. The response of the hydrological cycle, atmospheric circulation and conditions impacting tropical cyclones in the CMIP5 suite. (2012, in preparation)

Multi-model zonal-mean precipitation response to CO₂ increase is similar to previous generation

Global zonal-mean precipitation change (mm·day-1·K tropical warming-1)

Vecchi et al. (2012, in prep.)